
LST-Bench: Benchmarking Log-Structured Tables in the Cloud
Jesús Camacho-Rodríguez

jesusca@microsoft.com
Microsoft

USA

Ashvin Agrawal
ashvin.agrawal@microsoft.com

Microsoft
USA

Anja Gruenheid
anja.gruenheid@microsoft.com

Microsoft
Switzerland

Ashit Gosalia
ashit.gosalia@microsoft.com

Microsoft
USA

Cristian Petculescu
cristp@microsoft.com

Microsoft
USA

Josep Aguilar-Saborit
jaguilar@microsoft.com

Microsoft
USA

Avrilia Floratou
avrilia.floratou@microsoft.com

Microsoft
USA

Carlo Curino
carlo.curino@microsoft.com

Microsoft
USA

Raghu Ramakrishnan
raghu@microsoft.com

Microsoft
USA

ABSTRACT

Data processing engines increasingly leverage distributed file sys-
tems for scalable, cost-effective storage. While the Apache Parquet
columnar format has become a popular choice for data storage
and retrieval, the immutability of Parquet files renders it imprac-
tical to meet the demands of frequent updates in contemporary
analytical workloads. Log-Structured Tables (LSTs), such as Delta
Lake, Apache Iceberg, and Apache Hudi, offer an alternative for
scenarios requiring data mutability, providing a balance between
efficient updates and the benefits of columnar storage. They pro-
vide features like transactions, time-travel, and schema evolution,
enhancing usability and enabling access from multiple engines.
Moreover, engines like Apache Spark and Trino can be configured
to leverage the optimizations and controls offered by LSTs to meet
specific business needs. Conventional benchmarks and tools are
inadequate for evaluating the transformative changes in the storage
layer resulting from these advancements, as they do not allow us
to measure the impact of design and optimization choices in this
new setting.

In this paper, we propose a novel benchmarking approach and
metrics that build upon existing benchmarks, aiming to system-
atically assess LSTs. We develop a framework, LST-Bench, which
facilitates effective exploration and evaluation of the collabora-
tive functioning of LSTs and data processing engines through tai-
lored benchmark packages. A package is a mix of use patterns re-
flecting a target workload; LST-Bench makes it easy to define a
wide range of use patterns and combine them into a package, and
we include a baseline package for completeness. Our assessment
demonstrates the effectiveness of our framework and benchmark
packages in extracting valuable insights across diverse environ-
ments. The code for LST-Bench is open source and is available at
https://github.com/microsoft/lst-bench/.

1 INTRODUCTION

Parquet [63] and ORC [61] are widely popular columnar file for-
mats designed to optimize data storage and retrieval, with a bias
toward read-heavy workloads. These files are designed to be im-
mutable: once created, they are read-only and optimized for efficient
columnar reads. Modern analytical workloads, however, require

frequent incremental updates to structured data, i.e., tables, in small
batches in order to expedite insights and maximize the business
value derived from data. Log-Structured Tables (LSTs) effectively
cater to this requirement while leveraging the inherent strengths
of columnar formats. They have become the industry standard and
pervasively adopted in the field. Several implementations of LSTs
have emerged, with Delta Lake [4, 20], Apache Iceberg [37], and
Apache Hudi [28] being the most widely adopted ones. These LSTs
add a metadata layer on top of immutable columnar files to repre-
sent versions of tables and specify how data processing engines
and applications interact with them1.

LSTs represent a significant paradigm shift in the storage layer
design from traditional warehouse systems. Unlike traditional sys-
tems that manage their own storage [2, 60, 71], LSTs rely on non-
POSIX APIs provided by object stores [3, 26, 52, 62] to enable their
features, which can be shared across compute engines. LSTs use
column-oriented log-structured immutable files instead of the row-
oriented in-place updated page files used by traditional OLTP and
warehouse database systems [1]. LSTs are designed specifically
for processing large-scale data that receives continuous trickle
updates [9], which, while not as frequent as in OLTP-style work-
loads, differmarkedly from the infrequent, large-scale batch updates
that traditional warehouses doing in-place updates are designed
for [45, 76]. They provide single-table ACID transactions2 using
multi-version concurrency control [77], creating a new version of
tables by ‘depositing’ a new immutable layer of files containing
changes made to the dataset. This approach also enables features
such as time travel queries. However, one drawback of having mul-
tiple layers of version files is the increase in IO operations required
to retrieve data for query processing, which can result in slower
query execution [14]. To tackle this issue and achieve desired out-
comes, LSTs offer various controls, optimizations, and algorithms,
including compaction, file sizing, clustering, and caching.

1While these implementations do not yet cover security and access control, we believe
that they need to do so; in practice, most systems using them add a security layer.
2Multi-table transactions are a notable gap in comparison to traditional database
systems; we expect this will also be addressed in future.
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Figure 1: Execution time comparison of TPC-DS single user
& data maintenance test iterations at different scale factors
(SF=100, SF=1000) using various LSTs and strategies such as

Copy-on-Write (CoW) and Merge-on-Read (MoR) on Spark.

1.1 Challenges in Benchmarking LSTs

The differences between LSTs and traditional warehouse systems
introduce unique new challenges for users to learn how to operate
and tune LSTs. Benchmarking is the go-to methodology to learn
the characteristics of these new systems. However, there has been
limited research on developing innovative evaluation mechanisms
for LSTs aimed at formalizing the complexities of continuously
changing performance in long-running deployments or the effect
of concurrently running (and often expensive) maintenance opera-
tions on files stored on object stores.

As a result, users have been forced to rely solely on previously
established benchmarks. Current evaluations typically rely on TPC-
DS [57], which has long been the standard OLAP benchmark, and
involve running a limited number of queries or using handcrafted
queries to test a variety of operations [12, 44]. We observe that
these evaluations suffer from two main limitations that restrict
their ability to provide useful insights for LSTs. Firstly, they fail to
uncover hidden characteristics inherent in LSTs and data processing
engines that are crucial in real-world usage scenarios. Secondly,
they lack specific evaluation metrics that are important for LSTs,
such as performance degradation over time. Our goal is to propose
a framework that complements a base workload such as TPC-DS
to address these limitations.
Evaluation Scenarios. Current benchmarking workloads, such
as TPC-DS, reflect a generalized understanding of OLAP tasks and
do not consider characteristics such as (𝑖) longevity, which involves
handling frequent data modifications over a long period of time;
(𝑖𝑖) resilience, which involves handling multiple data modifications
of varying sizes in a regularly optimized table; (𝑖𝑖𝑖) read/write con-
currency, which involves handling multiple sessions reading and
writing data simultaneously, potentially using multiple compute
clusters; or (𝑖𝑣) time travel, which involves querying data at different
points in time. However, these characteristics are crucial for LSTs,
which vary from traditional warehousing systems in building on

immutable files and relying heavily on versions and mechanisms for
compaction, version control, etc., and also in how they are deployed
by customers interested in new features such as time travel.

Example 1.1. As we mentioned previously, performance degrada-
tion due to accumulation of version files over time is an important
evaluation factor for LSTs. The standard TPC-DS workload involves
two rounds of interleaved read and write queries, typically reported
together [57]. Instead, we conducted experiments with an increased
number of TPC-DS single user (read-only) query iterations, along-
side data maintenance (read-write) steps between individual single
user iterations. Figure 1 depicts the results, demonstrating con-
sistent execution time deterioration for both single user and data
maintenance tests (details in §5.1). More importantly, by analyzing
the results, we can observe interesting trends beyond the second it-
eration, which would be overlooked if relying solely on the original
TPC-DS workload.

Performance Metrics. Similar to other benchmarks [73], the TPC-
DS specification focuses on a primary metric, namely queries per
hour for decision support (QphDS), which provides a single per-
formance measurement that is used for the comparison of systems.
While this approach simplifies the ranking of multiple systems, it
fails to capture essential dimensions that are relevant for evaluating
LSTs. For instance, understanding the performance and efficiency
degradation of LSTs over time is crucial to determining how system
designers can effectively optimize platforms that rely on LSTs.

Example 1.2. The results of executing TPC-DS3 (scale factor 1000)
with various LSTs and Spark are presented in Table 1. However,
QphDS does not capture the performance degradation of the second
run relative to the first (i.e., the increase in latency), depicted in the
‘Inter-test Degradation’ column, which shows that well-performing
LSTs can significantly degrade over time. These numbers indicate
that running these LSTs without appropriate mediation will result
in low-performance results.

Table 1: Latency increase between TPC-DS test iterations.

LST Throughput-QphDS Inter-test Degradation

Delta 511K 2.7 -> 5.2 hrs (92%)
Hudi-CoW† 262K 6.2 -> 6.5 hrs (5%)
Hudi-MoR‡ 112K 23 -> 24 hrs (6%)

Iceberg-CoW† 549K 2.7 -> 4 hrs (45%)
Iceberg-MoR‡ 493K 2.9 -> 5 hrs (73%)
† Copy-on-Write mode ‡Merge-on-Read mode

Framework Flexibility. The overall performance and cost of LSTs
are significantly influenced by the query engine and algorithmic
components that orchestrate optimization tasks such as file cluster-
ing, small file compaction, caching, and more. For instance, in §5.1,
we show that read queries exhibit up to an 85% improvement in
execution time when running on Trino compared to Spark, for both
Delta and Iceberg. This difference stems mainly from Spark’s de-
fault distribution mode, which leads to generation of a large number
3Standard dataset and execution rules were followed, but the audit step was not
performed.
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of small data files. Consequently, it is important that a benchmark-
ing framework for LSTs enables detection and analysis of such
variations. In the aforementioned case, we draw our conclusion by
correlating the benchmark run with telemetry collected from the
cloud storage infrastructure using our framework. Moreover, as
LSTs are a new proposal with continuously expanding use cases, it
is critical that the framework supports extension to new engines,
datasets, and scenarios that go beyond traditional OLAP tasks.

1.2 Contributions

This paper presents a benchmarking framework to evaluate open-
source LSTs and overcome the limitations of existing benchmarks.
Our contributions are as follows:
Conceptual Model. We introduce a conceptual model that al-
lows us to understand performance in terms of three dimensions:
metadata representations, algorithms associated with LSTs and
their operations, and engine characteristics (how they carry out
certain operations and how they use the underlying LSTs) (§2).
Our model provides insights into the factors that influence query
performance in LSTs and highlights the surprising amount of com-
monality across different table formats. We hope this can help the
community to develop a more unified approach to building, using
and benchmarking these emerging table implementations.
LST-Bench: A Benchmarking Framework for LSTs. We de-
sign a benchmarking framework, LST-Bench, that focuses on key
characteristics of LSTs and measures fundamental metrics for a
thorough understanding of their relative performance in different
scenarios (§3). Building upon TPC-DS, our benchmark proposes
new extensions, relevant to LSTs, and offers the ability to define
packages of workload patterns, inspired by real-world analytical
workloads. We include a baseline package for completeness.
LST-Bench Implementation. We implement the framework, ty-
ing our novel benchmark and proposed metrics together (§4). It
automates the process of running the workloads and collects the
required telemetry from the engine and various cloud services to
compute the metrics necessary for evaluation. LST-Bench is avail-
able as an open-source contribution4.
Evaluation. We use LST-Bench to evaluate the performance, effi-
ciency, and stability of out-of-the-box Delta Lake, Apache Iceberg,
and Apache Hudi. Through our analysis of the results (§5), we pro-
vide insights into their strengths and weaknesses. Additionally, we
conduct experiments using two widely adopted data processing
engines, Apache Spark and Trino, and showcase their significant
impact on the overall performance and efficiency of LSTs.

Our primary focus in this work is to develop a fair, comprehensive,
and consistent framework for evaluating LSTs. While we provide
insights into the current state of LSTs, it is important to note that
different results could accrue for several reasons in practice: (𝑖) using
a different base workload or benchmark package, (𝑖𝑖) impact of
overall system, including aspects such as security and access control,
or (𝑖𝑖𝑖) impact of engine and its level of integration with the LST. We
have designed LST-Bench as a modular, easy-to-extend framework

4https://github.com/microsoft/lst-bench/.

and welcome contributions to our open-source codebase to enhance
the framework and methodology proposed in this paper.

2 A CONCEPTUAL MODEL FOR LSTS

Delta Lake, Hudi, and Iceberg are rapidly evolving independently
while sharing core characteristics, such as versioned table data
stored as immutable files, a metadata layer describing the data,
various controls and optimizations, and integration with popular
engines. In this section, we propose a conceptual model that utilizes
these common characteristics and represents an LST configuration
along a three-dimensional space. Specifically, the first dimension
pertains to the metadata layer representation introduced by each
LST (§2.1), the second dimension encompasses algorithmic compo-
nents and LST parameters for controls and optimizations (§2.2), and
the third dimension focuses on the behavior of the data processing
engines (§2.3). The performance and efficiency of query processing
on LSTs are determined by the combination of these dimensions. In
§5, we rely on this model to analyze and compare the observations,
similarities, and differences among the various LSTs tested.

2.1 Metadata

The metadata layer plays a crucial role in determining how engines
interact with the format and serves as one of the key distinguishing
components of LSTs5. LSTs store metadata within the correspond-
ing file structure of a table. Specifically, these formats maintain a
commit log of operations performed on each table, such as adding or
removing data files, or modifying the schema. How the (meta)data
files are modified may change depending on the LST, and the way
the metadata is laid out in the storage system is a key factor that
affects the performance and features of different LSTs. A summary
of the various metadata layouts is included in Figure 2.

For each commit, Delta stores a log file identified by a mono-
tonically increasing ID. This file includes an array of actions that
were applied to the previous version of the table, along with statis-
tics such as the minimum and maximum values for each column.
The metadata subdirectory also includes checkpoint files that store
non-redundant actions. These files are generated every 10 transac-
tions by default and are referenced in the table metadata for quick
access to the last checkpoint. In contrast, Iceberg takes a differ-
ent approach by organizing files hierarchically to represent the
table’s state. The top-level structure consists of a metadata file that
is replaced atomically whenever changes occur. This file contains
references to manifest list files, each of which represents a snapshot
of the table at a specific point in time. The manifest list files, in
turn, reference manifest files, which track the data files and provide
statistics about them. Lastly, Hudi creates a timeline by storing
the actions performed on the table as files identified by their start
commit time. It also uses a nested metadata table [27], which is a
Hudi table itself, to store physical file paths and indexed files that
belong to the table, thereby enabling efficient file pruning.

2.2 Algorithms

Implementations of LSTs incorporate various algorithms and con-
figurations that give rise to different behaviors. These algorithms

5Notably, translating between different metadata representations enables representing
one LST as another without costly data rewriting [13, 56].

https://github.com/microsoft/lst-bench/
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Figure 2: File layouts for LSTs under study.

and configurations encompass protocols for engine interaction,
impacting concurrency and isolation guarantees, as well as con-
figuration parameters that influence higher-level aspects like the
data layout within the table, with significant implications for query
performance. Additionally, LSTs introduce diverse algorithms for
bookkeeping and cleanup operations. Importantly, all these aspects
are accompanied by configuration parameters that allow for fine-
tuning the behavior of a particular LST implementation.

2.2.1 Concurrency and Locking. LSTs leverage multi-version con-
currency control (MVCC) [23, 58, 69] to allow for concurrent trans-
actions to access the same data in the storage system without in-
terfering with each other. This is achieved by creating multiple
versions or snapshots of the same logical data.

All three LSTs allow transactions to be executed within the
context of a single table by implementing optimistic concurrency
control [21, 34, 38]. However, they differ in their approaches to
conflict resolution and the level of isolation they provide. Hudi and
Iceberg support snapshot isolation, which means that even if other
transactions are concurrently modifying the table, a transaction
reads a consistent snapshot of the data as it existed at the start of the
transaction. In turn, Iceberg and Delta provide a stricter isolation
level by default, which guarantees that writes to the table will occur
in a serial order.

The lock management requirements, and consequently their
implementation, differ across the three LSTs due to their different
designs. Delta and Iceberg have minimal lock management needs
and rely only on atomic put-if-absent or rename operations provided
by the underlying object store or file system [4, 42]. Hudi has a
greater reliance on locking, particularly when using the metadata
table to track table files [30].

2.2.2 Data Layout Configuration. Since LSTs operate on the as-
sumption that data files are immutable, they require mechanisms
for updating and deleting rows. The two supported strategies are
Copy-on-Write (CoW) and Merge-on-Read (MoR). CoW creates a
new copy of the data files for each update or delete operation, while
MoR writes changes to a separate file (often referred to as delta
file) that is merged into the dataset during read operations. CoW
is preferred for read-heavy workloads, while MoR is the preferred

strategy for write-heavy workloads. Iceberg and Hudi currently
support both CoW and MoR, while Delta only supports CoW6.

2.2.3 Table Maintenance Operations. LSTs, similar to previous
MVCC implementations [77], provide operations that ensure the
data stored in a table is optimized and efficient. These operations
include (𝑖) compacting data files within a table, which consolidates
smaller files into larger ones and optionally sorts the data based on
specific column values, reducing metadata overhead and improving
query performance, and (𝑖𝑖) vacuuming data files within a table,
which deletes expired data files after the retention period or ones
that are no longer referenced by the table metadata because they
are deemed useless after the compaction process.

Engines relying on LSTs typically provide an API to perform
these maintenance operations on-demand. For instance, commands
to execute them are often available to users as SQL extensions [22]
or stored procedures [32, 41]. LSTs have different default settings
for using these maintenance operations, for example, Hudi enables
compaction and vacuum out-of-the-box while Iceberg and Delta
require users to specify them. Users may execute these operations
after modifying table data or schedule them to run automatically
based on predetermined criteria such as the age or size of the data
files. Additionally, some commercial platforms offer the automation
of table maintenance [17, 59, 70].

2.3 Engines

Engines and their configurations have a significant impact on the
performance of all LSTs. Clearly, the efficiency of engine internals
directly affects the speed of data read and write operations to the
LST. However, there are additional aspects related to engine config-
uration that may not be immediately apparent but have substantial
implications for performance.

For example, the cluster configuration, parallelism settings, and
the chosen execution plan by the engine can have effects beyond
the execution of individual queries. Concretely, these factors can
impact the fragmentation at the storage level, as they can influence
the number of files generated by the engine during write operations
(recall our discussion comparing the behavior of Spark and Trino

6MoR support is an upcoming feature in Delta Lake.
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workloadworkload phasephase sessionsession tasktask statementstatement

Figure 3: Workload components and their relationships.

in §1). This, in turn, has ripple effects on subsequent operations,
affecting the performance of both reads and writes, including those
executed during table maintenance operations.

3 LST-BENCH BENCHMARKING

FRAMEWORK

TPC-DS [72] is widely used to evaluate decision support systems,
covering various aspects such as data loading, query execution, sus-
tained throughput, and data updates. Researchers and practitioners
are also extensively using its dataset and workload to assess the
efficiency of LSTs [12, 16, 44, 46], often measuring query latency.
In this section, we propose a new benchmark for LSTs that builds
upon TPC-DS as a “base workload”, using its data set generator as
well as its query set but modifying how the benchmark execution
is structured. Specifically, we create several workload patterns that
invoke tasks of the base workload along with other LST specific
tasks such as compaction or time travel (§3.1). Furthermore, we pro-
pose new metrics intended to capture performance characteristics
specific to LSTs (§3.2).

3.1 Workload Patterns

We divide the work of extending the base workload into two parts.
First, we enhance the benchmark’s customizability by proposing
new tasks specific to LSTs, as well as making it easier to use ex-
isting ones to create custom workloads. This is discussed in detail
in §3.1.1. Second, we utilize the proposed extensions to create a
baseline package consisting of workload patterns useful to gain
insights into LST aspects overlooked by the base workload, such as
stability, resiliency, read/write concurrency, and time travel. These
workload patterns are presented in §3.1.2. Before discussing these
extensions in detail, we introduce the model employed for workload
representation and, for completeness, briefly describe the original
TPC-DS workload.
Workload Representation. Figure 3 depicts the components of
a workload and their relationships. A task is a sequence of SQL
statements, while a session is a sequence of tasks that represents
a logical unit of work or a user session. A phase is a group of
concurrent sessions that must be completed before the next phase
can start. If a phase consists of a single task, we may refer to it
interchangeably by its task name. Lastly, a workload is a sequence
of phases.

We choose this flexible representation to ensure its adaptability
to both standard and custom workloads prevalent in practice, offer-
ing a comprehensive solution. Although not all scenarios require
all abstractions, our approach was driven by diverse and extensive
user feedback, including (𝑖) facilitating the mapping of existing
workloads such as TPC-DS, (𝑖𝑖) aligning with the concept of ses-
sions in JDBC, and (𝑖𝑖𝑖) ease of reusability. For instance, a session
initiates a fresh connection to the engine, whereas a task simply
groups a collection of SQL statements. Consequently, a workload

designer can either execute multiple tasks in one session or initiate
numerous concurrent sessions, each handling a subset of tasks.
W0. Original TPC-DS. According to these definitions, the TPC-DS
benchmark executes multiple phases as shown in Figure 4a. These
phases include (𝑖) a Load phase where data is loaded into the tables
used in the experiment, (𝑖𝑖) a Single User phase which runs a series
of complex queries to determine the upper limit of the engine’s
performance, (𝑖𝑖𝑖) Throughput phases involve running multiple
sessions in parallel, each executing a Single User task with a
different permutation of the query set, to assess the engine’s ability
to handle multiple users and queries simultaneously, and (𝑖𝑣) Data
Maintenance phases that are executed to test the engine’s ability
to handle data inserts and deletes.

3.1.1 Workload Composability. Next we describe our extensions
to enhance TPC-DS customizability. Note that although we will
propose specific workload patterns in §3.1.2, our extensions offer
flexibility for developing new patterns that can highlight character-
istics that may have been overlooked in previous evaluations.
Configurable Sequence of Phases. As mentioned previously, the
TPC-DS standard defines a strict sequence of phases that must be
executed in a specific order. To evaluate specific aspects of LSTs, for
example their longevity, we require a more flexible approach to the
order of phases that is not captured by the standard sequence. For
this reason, the sequence of phases that the benchmark executes
should be configurable.
Ability to Run Multiple Tasks Concurrently within a Phase.

TPC-DS sequences are linear, meaning that different tasks never
overlap with each other (even though in the throughput phase mul-
tiple Single User tasks run in parallel). However, as other works
have previously reported [5], a common use case for LSTs is query-
ing the data while background operations, such as the incremental
maintenance of downstream tables or materializations, are concur-
rently executing. Therefore, we want to be able to evaluate LSTs
while running multiple, possibly different, tasks concurrently.
Optimize Task. Given that table maintenance operations are fre-
quently executed concurrently with other queries, it is critical to
include them in the evaluation of LSTs to determine whether they
(𝑖) can restore the LST to its initial non-degraded performance
state, and (𝑖𝑖) impact the performance of other queries running
concurrently. To address this, we introduce a new Optimize task
that involves running compaction on LSTs. While LSTs offer var-
ious compaction strategies to optimize file layout and size, such
as bin-packing or sorting, we opt to use the default strategy for
each LST in our task definition. However, note that selecting an
alternative strategy would be as straightforward as modifying the
SQL associated with the task definition.
Time Travel Task. In §1.1, we mentioned that a benchmark
should evaluate new features provided by LSTs, such as time travel,
which allows querying of historical versions of a table based on
timestamp or version. Therefore, we introduce a Time Travel task
that executes the same queries as a Single User task but as of a
given point in time.

3.1.2 Baseline Package for Evaluation of LSTs. Based on these ex-
tensions, we propose a package consisting of four workload patterns
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Figure 4: TPC-DS and extensions to evaluate LSTs characteristics.

to gain insights that cannot be obtained by executing the original
TPC-DS workload. To design our experiments, we carefully selected
various parameter values, including experiment length, based on
empirical observations from customer workloads.
WP1. Longevity. This workload evaluates the performance, cost,
and IO stability of LSTs over time. The proposed sequence is shown
in Figure 4b. The experiment involves six Single User phases, each
followed by a Data Maintenance phase to add new metadata and
data to the table. Repeating this process multiple times allows us
to observe how the LST behaves over time and identify significant
trends, if there are any.
WP2. Resilience. This workload, shown in Figure 4c, evaluates
the impact of table maintenance operations such as compaction
on degradation over time. Each Optimize phase is executed subse-
quent to an increase in the number of write statements executed
on the source tables, thus measuring the performance of Optimize
operations as the ratio of refreshed data in a table increases.
WP3. Read/Write Concurrency. This workload evaluates the im-
pact of the concurrent execution of read and write statements. As
shown in Figure 4d, we run Single User phases concurrently with
the Data Maintenance and Optimize phase respectively to simu-
late this scenario. Note that by leveraging the separation of storage

and compute and the on-demand availability of cloud computing
resources, our framework has the ability to run concurrent oper-
ations on separate compute clusters, which allows us to evaluate
the storage layer’s impact without the complication of interleaving
these operations at the compute layer.
WP4. Time Travel. LSTs introduce time travel, which enables
querying data at specific points in time by leveraging SQL exten-
sions to specify the desired version of the table [35, 43, 66]. The
workload shown in Figure 4e evaluates this new feature. We ex-
ecute multiple Data Maintenance phases on the original data,
followed by the same number of Time Travel phases, each exe-
cuted on a version of the table produced by a previous Load or
Data Maintenance phase.
Discussion. We could enhance our proposal through additional
extensions, such as new tasks to cover dimensions that are still over-
looked in the current proposal, e.g., vacuum operations, schema
evolution [33, 36, 65], partition evolution [40], or deep and shallow
table cloning [18]. Moreover, we could introduce tasks containing
SQL statements that modify engine behaviors at the session level
(e.g., Spark’s set statements [68]), facilitating the evaluation of im-
portant engine features and configurations, including parallelism
settings. Lastly, incorporating workload patterns consisting of a
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more concurrent, diverse, and intricate mix of tasks would further
assist in evaluating LSTs. For instance, this could help to evaluate
scenarios characterized by increased concurrency, which is com-
mon when dealing with LSTs, and diverse conflict resolution and
isolation level configurations. It could also help to assess whether
background operations like file consolidation and clustering, which
typically run automatically and continuously in fully managed plat-
forms without explicit invocation during a workload’s execution,
are indeed triggered and yielding their intended effects. Implement-
ing these extensions into our framework is straightforward, and
we plan to explore it in the future.

3.2 Metrics

This section explores metrics for a comprehensive and fair evalu-
ation of LSTs unique features. We first discuss traditional metric
categories applicable to LSTs, such as performance, and storage
and compute efficiency (§3.2.1). We then introduce a stability met-
ric that builds upon the aforementioned metrics to reveal crucial
degradation characteristics of cloud data warehouses (§3.2.2). Our
multi-metric approach draws from prior research [15, 73] and our
own observations, and importantly, it can be easily extended to
cover unexplored dimensions.

3.2.1 Traditional Metrics. In a cloud environment, several cate-
gories of metrics are important to consider when evaluating LSTs.
First, data warehouse performance is traditionally evaluated using
twomeasurements, latency, i.e., measuring the round-trip of queries,
and throughput, i.e. , measuring the capacity of the system. Second,
the interaction of a LSTwith the storage layer is an important aspect
as LSTs specifically rely on cloud (object) storage. Unlike local disks,
cloud IOPS are charged on a pay-as-you-go basis. This means that
managing storage utilization is not the only factor to consider, but
also total API operations and data transfers, and peak rates. Finally,
a compute efficient LST achieves high performance while using a
small amount of resources which is especially crucial on shared
clusters. Key metrics include CPU utilization, memory utilization,
and disk utilization, which measure the amount of CPU, memory,
and local disk used for processing the workload, respectively.

Note that some of these (types of) metrics are captured as part
of the TPC-DS standard. For example, QphDS is a throughput met-
ric while load time, system availability and price per QphDS are
additional metrics that contribute to a more comprehensive under-
standing of the evaluated systems.

3.2.2 Stability. LSTs are designed to receive continuous trickle
updates, which, over time, can result in accumulation of delta files
in the object store. Intuitively, the oftentimes smaller delta files
degrade the system’s efficiency as it causes the compute to con-
sume additional resources to successfully execute a workload. The
extent of the degradation depends on several factors, including the
number of new files and data layout in the files. A well designed
system is less susceptible to the degradation as more data updates
are performed, or may have features to auto-mitigate adverse side
effects of updates. To measure degradation, we introduce a new
metric category, stability, which examines a system’s ability to sus-
tain its performance and efficiency (e.g., latency) consistently and

Figure 5: Example for stability computation.

exhibit minimal degradation. The process of calculating degrada-
tion involves dividing a workload’s timeline into different phases,
as described in §3.1, and then comparing the performance and effi-
ciency measurements taken during each phase of the same type. For
example, Single User phase SU-𝑖 would only be used for the com-
putation of stability pertaining to Single User phase performance.
We formally define the degradation rate below.

𝑆𝐷𝑅 =
1
𝑛

𝑛∑︂
𝑖=1

𝑀𝑖 −𝑀𝑖−1
𝑀𝑖−1

(1)

where
• 𝑀𝑖 is metric value of the 𝑖𝑡ℎ iteration of a workload phase,
• 𝑛 is the number of iteration of the phase, and
• 𝑆𝐷𝑅 is the degradation rate.

Intuitively, 𝑆𝐷𝑅 is the rate at which a metric is growing or shrinking,
due to the cumulative effects of changes in the underlying system’s
state. It provides information about how quickly a system degrades.
A stable LST exhibits low 𝑆𝐷𝑅 . Note that 𝑀 can be selected from
the metrics introduced in §3.2.1; for metrics where higher values
indicate better performance (e.g., throughput), the same function
can be used by replacing𝑀 with its reciprocal 1/𝑀 .

Example 3.1. Figure 5 shows 𝑆𝐷𝑅 evaluation of a system 𝐷 ,
𝑆 (𝐷)𝐷𝑅 , and a system 𝐻 𝑆 (𝐻 )𝐷𝑅 base on latency measurements
over time. For𝐷 , we calculate the degradation rate as ( 2847 +

31
75 +

25
106 +

32
131 − 6

163 ) ∗
1
5 ≈ 0.29, while 𝑆 (𝐻 )𝐷𝑅 ≈ 0.021. This indicates that

system 𝐷 is less stable than system 𝐻 , and, without any mitigation
actions, it will under perform over time.

Discussion. Other reasonable metrics can be incorporated in this
scheme. One example is relative standard deviation, which remains
impartial to the sequence in which the measurements are presented.
We opted for the current metric because it forms an essential build-
ing block for making predictions and taking appropriate actions.
Over and above the particular metric used to capture stability, we
want to emphasize the importance of stability as a new characteris-
tic to measure and optimize for.

4 LST-BENCH BENCHMARKING TOOL

This section presents the implementation details of LST-Bench, a
tool designed to benchmark and compare LSTs in the cloud, build-
ing on the ideas discussed in §3. Similar to existing benchmarking
systems like BenchBase [8, 24] and DIAMetrics [19], LST-Bench
includes an application written in Java that executes SQL workloads
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Figure 6: LST-Bench components and execution model.

against a database management system using JDBC (§4.1). More-
over, LST-Bench features a processing module written in Python
that consolidates experimental results and calculates metrics to
provide insights into LSTs and cloud data warehouses (§4.2).

4.1 Client Application

LST-Bench’s client is a flexible and modular benchmarking ap-
plication that enables users to easily combine various configura-
tions, LSTs, and workloads. As depicted in Figure 6, it follows a
configuration-driven approach that allows users to define (𝑖) clusters
connection details, (𝑖𝑖) specific options for the experiment, including
System-Under-Test (SUT) and LST-Under-Test (LUT), (𝑖𝑖𝑖) telemetry
collection configuration, and (𝑖𝑣) the workload to execute.
Experiment Definition. The configuration APIs enable users to
define the workload for an experiment as a series of phases, with
each phase identified by a unique, user-defined name. LST-Bench
provides a library containing the TPC-DS and new tasks described
in §3.1. Each task consists of a sequence of SQL statements stored
in files in a folder hierarchy; there are different files for the various
SQL dialects supported. In addition, certain tasks, such as Optimize,
have separate files for each LST under each engine, as LSTs have
distinct syntax for executing their table maintenance operations.
LST-Bench selects the appropriate files for an experiment based
on the workload configuration provided by the user.
Customizability and Extensibility. The SQL files can contain
variables that LST-Bench replaces before executing a particular
task. Users can use this mechanism to pass configuration values to
a task, such as the catalog name, database name, or desired table
location in the object store. Additionally, LST-Bench utilizes this
feature internally to inject necessary information to run certain
tasks, such as the timestamp value for Time Travel.

Incorporating new tasks into the LST-Bench library is straight-
forward. Users can add the files with the SQL statements that need
to be executed and include the new task in the LST-Bench library.
Once done, the new task can be referenced from the workload
definition files.

Experiment Execution. It is important to note that LST-Bench
does not automatically deploy and configure the compute cluster;
we are exploring this extension as future work. Instead, it is the
user’s responsibility to deploy the engine with the correspond-
ing LST libraries. When conducting an experiment, LST-Bench
utilizes JDBC and engine-provided drivers to connect to the SUT.
LST-Bench creates a JDBC connection pool of a size equal to themax-
imum number of concurrent sessions required by any phase in the
experiment. The workload configuration contains the phases that
need to be executed sequentially during the experiment. Moreover,
the default library includes tasks definitions that create external
tables in the engine catalog. These tables point to object store di-
rectories containing TPC-DS data generated by the benchmark tool
at the specified scale factors. These tasks are typically invoked at
the start of an experiment and the external tables they create are
currently used in Load and Data Maintenance tasks.

4.2 Metrics Processor

The metrics processor relies on telemetry collected by LST-Bench
as well as external, cluster-level telemetry that the user enables up
through cloud services. Specifically, LST-Bench collects and stores
a detailed breakdown of the start and end times of each experiment,
phase, task, and statement, as well as other configuration values
during the execution of a given workload. This telemetry allows
us to reason about the latency and throughput of the evaluated
LSTs. In addition, we rely on time series data that captures resource
utilization, storage API calls, or network I/O volume gathered by
cloud service providers which is accessible via dedicated APIs7.
The metrics processor package provides generalized drivers for
extracting external telemetry as well as specific implementations of
those cloud setups that we use for our evaluation. It also provides
notebooks and templates that allow users to plot the same (types
of) figures capturing both internal and external telemetry that we
will discuss next in our evaluation.

5 EVALUATION

In this section, we present benchmarking results for the workloads
described in §3.1 using LST-Benchwith Delta Lake, Apache Iceberg,
and Apache Hudi, running on Apache Spark [67] and Trino [74].
We used default parameter settings (e.g., isolation level) and did not
perform any special tuning for the evaluated LSTs. Tuning for optimal
performance is beyond the scope of this paper, whose focus is on how
to benchmark performance over LSTs. We chose Spark and Trino as
the compute engines for the evaluation because they are widely
adopted, open-source, and offer the most mature integration with
the LSTs examined in this study, based on our own experience. We
note that our benchmarking framework can readily be used with
other engines, and the extent to which those engines are integrated
with different LSTs will materially impact the performance across
LSTs. In brief, our results show:

7LST-Bench leverages standard auditing telemetry, making its insights-gathering
approach broadly applicable. However, in scenarios where access to telemetry from
cloud services is restricted, such as when the platform is offered through a vendor,
certain insights might be unavailable.
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• The accumulation of data files significantly degrades LST’s per-
formance, up to 6.8𝑥 in our study, unless maintenance is per-
formed to mitigate its impact.

• DML operations on Spark can result in a significantly higher
number of delta files than Trino, causing up to a 2.4X degradation
in performance in our tests. Additionally, the baseline query
workloads run at nearly double the speed on Trino for both
Delta and Iceberg tables.

• CoW and MoR modes have significant trade-offs regarding their
read/write interaction with the storage layer. For example, Hudi
and Iceberg MoR on Spark lead to high I/O volume and calls,
respectively, resulting in higher read query latency than CoW.

• Table maintenance has a big impact on Delta and Iceberg per-
formance stability, whereas Hudi maintains stable performance
without periodic maintenance by doing more upfront work.

• Tuning LSTs involves trade-offs depending on user goals. For
example, Iceberg’s default file group-by-group compaction re-
duces disruption on read queries running on the same cluster,
but significantly increases compaction time.

• Concurrent read/write sessions have non-trivial impact on query
performance. Combiningmaintenance operationswith read queries
on the same cluster can improve resource utilization without
affecting read latency. Running multiple compute clusters con-
currently can reduce execution time by leveraging compute and
storage decoupling in cloud engines.

We want to emphasize that the results we report are specific to
the versions and configurations that we tested, and their perfor-
mance can be subject to change and improvement due to further
tuning and future developments. Our main objective in sharing
these findings is to demonstrate LST-Bench’s ability to quantify
noteworthy trade-offs across combinations of engines and LSTs.

Our results highlight an important point–each LST offers op-
portunities to tune performance by making careful choices, e.g.,
when to do maintenance. In general, these choices depend upon
the target workload.
Hardware and Software Setup. Our experiments were conducted
on clusters running Spark 3.3.1 and Trino 420. Each cluster com-
prised 1 head and 16 worker nodes. Furthermore, for the evaluation
of concurrency (§5.3), additional clusters consisting of 1 head and 7
worker nodes were used. All clusters were provisioned by Azure
VMSS [54] and their nodes were Azure Standard E8as v5 instances
with AMD EPYC™ 7763 CPU @ 2.45GHz (8 virtual cores) and 64GB
RAM. For Spark, we used Delta Lake v2.2.0, Apache Iceberg v1.1.0,
and Apache Hudi v0.12.2. In contrast, in Trino, the LST implementa-
tion is integrated within the engine; currently, Trino only supports
read and write operations for Delta (CoW) and Iceberg (MoR). The
data sets for evaluation were stored in Azure Data Lake Storage
Gen2 (ADLS) [52]. We leveraged Azure Monitor [53] to collect
telemetry from the compute cluster and data storage, and relied on
Logs Analytics [55] to execute queries against the collected data.
Experimental Setup. To generate data at different scale factors
(SF100, SF1000), we used the dbgen tool in the TPC-DS bench-
mark [72] and stored the generated data in ADLS. Data streams
for Data Maintenance were also generated using the same tool
and stored in ADLS. Our Single User task is a permutation of the

99 queries in the benchmark. For our evaluation, we use the work-
load patterns described in §3.1, running WP1 on Spark and Trino,
and the remaining patterns solely on Spark; running them on Trino
is left for future work. We discuss the results of our evaluation next.

5.1 Longevity

The aim of the longevity workload (WP1, §3.1.2), consisting of six
Single User and five interleaved Data Maintenance phases, is to
evaluate an LST’s ability to maximize performance, efficiency, and
stability metrics in scenarios that involve frequent data updates.
Our findings demonstrate that by executing the workload using
LST-Bench, we can detect crucial configurations across all dimen-
sions of the LST model that significantly influence these objectives.

We ran WP1 against seven variations of LSTs derived from
representative selections across the three dimensions of the LSTs
(§2); Spark and Trino engines, CoW and MoR data algorithms, and
Delta, Iceberg, and Hudi as metadata layouts. Two scale factors,
100GB and 1TB, were used against each variation to account for
the impact of scaling. We recorded latency of each phase within a
run, along with storage and compute tier metrics (§3.2).

(𝑖)Compared to Trino, Spark-related variations exhibit low stability.
Figure 7a illustrates the execution time of all Single User phases
in WP1. We observe that in Spark with Delta and Iceberg, the
execution time of a Single User phase is always higher compared to
its previous run. This behavior is due to Spark’s default distribution-
mode parameter, which results in distribution of writes in a table
partition up to 200 times [50] , creating hundreds of thousands of
new delta files during Data Maintenance phase runs (Figure 8a).
Consequently, there are over 5𝑥 as many API calls to fetch the delta
files for read queries (Figure 7b). Figure 1 shows the ratio of runs of
Single User and Data Maintenance phases for two scale factors,
confirming the performance degradation observation for both scale
factors and phase types. However, this behavior differs from Trino
with Delta and Iceberg. Data Maintenance runs on Trino create
up to 40𝑥 fewer files (Figure 8a). We confirmed our hypothesis by
running Spark Single User phase on Delta files created by Trino
and observed the disappearance of previous degradation.

(𝑖𝑖) Trino demonstrates faster query execution compared to Spark.
During the build phase, both Spark and Trino generate an equal
number of files. Consequently, in the initial Single User phase be-
fore any Data Maintenance phase, both Spark and Trino process
the same number of files. However, our results in Figure 7 indicate
that Single User 1 completes nearly twice as fast on Trino for both
Delta and Iceberg. It is difficult to claim that Trino is consistently
faster than Spark, as it depends on various factors like configuration,
query type, plan, and data size. For instance, one contributing factor
to Trino’s speed advantage over Spark in our tests is its absence
of checkpointing. While checkpointing enhances fault tolerance, it
also introduces significant latency [49].

(𝑖𝑖𝑖) Spark with Hudi variation shows unmatched stability.We now
analyze the execution of Single User and Data Maintenance
phases using Spark with Hudi (Figures 1, 7 and 8). It exhibits distinct
behavior compared to Delta and Iceberg, as the execution time,
API calls, and data bytes read and written of the phases remains
stable. Through our investigation, we discovered that Hudi has
several default optimization-related parameters enabled, such as
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(a) Performance of WP1 SU phases. (b) Total ADLS API calls by SU phases. (c) Bytes read from ADLS during SU runs.

Figure 7: Evaluation of runtimes, network round trips, and storage utilization of Single User phases for 7 LSTs setups using

WP1 (𝑆𝐹1000). The results highlight how increase in network round trips affects phase execution times.

(a) Files created by DM phases. (b) Total size of new files.

Figure 8: Evaluation of storage usage of WP1 Data Mainte-
nance phases (𝑆𝐹1000).

automatic cleanup and compaction [29]. Moreover, a crucial design
choice in Hudi is to avoid creating small files by automatically
adding sufficient records during the writing process to achieve the
desired file size [31]. While these features contribute to stability in
performance and efficiency, which is highly desirable, they come
with trade-offs. We observe that, unlike Iceberg and Delta, Hudi-
related variations read up to ∼6x more data and exhibit higher
execution latencies. This observation is consistent with findings
from other recent studies [44].

(𝑖𝑣) Read-Write tradeoff in MoR mode. MoR optimizes frequent
table updates, reducing data file rewriting costs and write latencies.
However, it introduces a tradeoff: Increased computational cycles
and network IO during read operations, impacting performance. To
compare, we tested Hudi and Iceberg on Spark with CoW and MoR
modes. Figures 7a and 7b demonstrates that Iceberg and Hudi MoR
versions consistently have slower performance than CoW variants
due to the overheads mentioned earlier.
Performance Stability Analysis. To enable convenient stability
comparisons despite the observed variability, we evaluate the ef-
fective performance degradation between two phases, 𝑆𝐷𝑅 (§3.2.2),
for each experiment setup. The results are summarized in Figure 9.
Each cell presents the combined performance 𝑆𝐷𝑅 value for Single
User, Data Maintenance and Optimize phases across workloads

Figure 9: Performance Degradation, 𝑆𝐷𝑅 , Evaluation. As

lower 𝑆𝐷𝑅 is desired, Hudi emerges as most stable LST.

WP1,2,3, as well as the average for each setup. Figure 9 is consis-
tent with our prior discussion, confirming Hudi as the most stable
LST, particularly in read-intensive scenarios as indicated by 𝑆𝐷𝑅

below 0.07. Conversely, except in one instance against WP1, Ice-
berg consistently exhibits lower stability, with a 𝑆𝐷𝑅 up to 0.89.
Further analysis against WP2,3, which involves optimization and
concurrency, is presented in §5.2 and §5.3.

5.2 Resilience

Next, we consider how the performance of LSTs changes when
maintenance operations are introduced into the workload. We use
the resilience workload (WP2, §3.1.2), which evaluates the impact
of the Optimize phase, i.e., compacting small data files into larger
files for higher efficiency. The results for SF1000 are shown in
Figure 10a. WP2 iteratively executes a sequence of Single User
(labeled SU-𝑖), Data Maintenance (with an increasing number
of tasks), Optimize, and Single User (labeled SU-𝑖-O) tasks. Note
for a given 𝑖 , SU-𝑖 and SU-𝑖-O query the same logical version of
the data. Results for SU-1 and SU-2 are not shown since they were
discussed in §5.1.

We observe significantly different behavior for the three LSTs.
Similar to the performance development in previous workloads, we
observe that the addition of Optimize phases does not impact the
performance of Hudi since its performance remains stable and only
degrades minimally. For both Iceberg and Delta, on the other hand,
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(a) Phase Latency (in minutes). Single User performance recovers to pre-Data Maintenance levels due to Optimize.

(b) Storage API Calls (Millions). Single User results show significant reduction in API calls after Optimize.

(c) Total I/O Volume (in TB).

Figure 10: Performance and storage efficiency evaluation of WP2 phases (SF1000).

we observe that the Optimize phase has a significant impact on
subsequent query execution of Single User phases, as shown by
comparing SU-3 to SU-3-O and SU-4 to SU-4-O. We observe that the
latency drops by 2.3x (1.5x for Iceberg-CoW and 2.2x for Iceberg-
MoR) for the first pair and 2.6x (1.8x for Iceberg-CoW and 3.2x
for Iceberg-MoR) for the second pair. This indicates that periodic
data maintenance operations are crucial for these LSTs to reduce
the number of storage layer access calls (see Figure 10b) which are
significantly higher in ‘unoptimized’ phases. For Hudi, we observe
a high I/O volume in the Single User phase, solely composed of
file read operations. Furthermore, we see a relatively low amount
of read or write activity for CoW in the Data Maintenance and
Optimize phases (similar to Iceberg-CoW) while Hudi-MoR has
a disproportionally high data volume in the Data Maintenance
phase (similar to but more prominent than for Iceberg-MoR).

Interestingly, we observe a drastic increase in latency for Iceberg
when executing Optimize phases, which cannot be observed for
any other LST. Both I/O and CPU utilization remain comparatively
low during these phases but by looking at the storage access calls in
detail, we observe that Iceberg issues a large number of (sequentially
executed) storage layer access calls. The reason is that for each
table, Iceberg’s data compaction operation is executed file group-
by-group by default [39]. The operation parameters can be adjusted
to run in parallel for 𝑛 groups, which can result in a significant
performance boost, but making such tuning adjustments requires
additional use case context. Another interesting observation when
looking at data maintenance cycles is a spike in I/O cost for the
first Optimize phase executed by Delta. This suggests that the
operation makes significant changes to the data layout of the table

generated after Load, reducing latency and I/O cost for subsequent
data maintenance operations.

Finally, we observe that for this particular workload, CoW-based
outperform MoR-based execution models, i.e., they have a lower
latency and incur lower I/O cost.

5.3 Read/Write Concurrency

Thus far, the sessions have been executed sequentially, utilizing all
available resources. However, LSTs are designed with concurrency
in mind. In this section, we analyze the impact of running read and
write sessions concurrently using WP3. Note that both WP2 and
WP3 contain the same set and sequence of tasks. The only difference
is that the phases of WP3 execute Single User task concurrently
with either Data Maintenance or Optimize. Thus, we use WP2
as the baseline to evaluate execution speedup and overheads. The
concurrent sessions can be executed either on a single cluster or
on multiple clusters. In the latter setup, the Single User task is
executed on our larger cluster, while the Data Maintenance and
Optimize tasks are executed on our smaller one. We refer to this
setup as WP3-Multi8.

Figure 11a shows the comparison of the total execution time
of the individual statements within all Single User, Data Main-
tenance, and Optimize tasks, referred to as Statement Time, as
well as the total end-to-end experiment execution time, which we
call Experiment Time, for a single cluster. In Spark, we observe that
the Experiment Time for WP3 is within a margin of 10% compared
to WP2, while Statement Time degrades by at least 25% across all
8Hudi excluded since we encountered issues where queries failed due to updated
underlying data, which prevented us from executing the Data Maintenance and
Single User tasks concurrently on separate clusters.
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(a) Single cluster (WP3).

(b) Breakdown per task type on multiple clusters (WP3-Multi).

(R) represents the reading engine (SU tasks), (W) the writing en-

gine (DM and O tasks).

Figure 11: Performance gains and losses (in %) of WP3 and

WP3-Multi relative to baselineWP2 (SF1000). Higher positive

values indicate better performance.

LSTs. Consequently, the concurrent execution of sessions in this
setup does not necessarily lead to significant performance improve-
ments due to resource contention. In contrast, Trino demonstrates
more efficient utilization of the cluster resources, resulting in gains
of at least 40% in Experiment Time, with only minor degradation
observed in Statement Time.

We now turn our attention to the breakdown of Statement Time
per task type for the multiple cluster setup, depicted in Figure 11b.
To begin, when Spark executes Data Maintenance and Optimize
tasks, Trino execution of Single User experiences a substantial
slowdown compared to WP2. Conversely, Spark execution of Sin-
gle User shows a counterintuitive speed-up relative to WP2. These
differences can be attributed to the data layout generated by Data
Maintenance tasks. For instance, using a smaller Spark cluster for
Data Maintenance results in fewer generated files compared to a
larger Spark cluster, though it still generates more files than Trino,
as we discussed in §5.1. In all scenarios, reduced file reads in the
multi-cluster setup leads to a decrease in task execution time. In
relation to this observation, Optimize tasks in Spark are notably
faster compared to WP2 due to fewer file reads, while Optimize
tasks in Trino tend to be slower, primarily due to constrained re-
sources in the smaller cluster. In summary, these results highlight
the significant impact of setup and configuration values for LSTs,
table maintenance operations, and engines on the overall perfor-
mance, and the importance of considering real-world scenarios

Figure 12: Latency measurements for WP4 (SF1000).

that previous benchmarks may have overlooked, such as the use of
different engine combinations, in which LST-Bench can help.

5.4 Time Travel

Lastly, we study the performance of time travel queries in Spark9,
depicted in Figure 12 for SF1000. In the figure, we use the notation
SU-𝑖 .𝑣 to represent the execution of a Single User task 𝑖 that queries
version 𝑣 of the table. Here, 𝑣 = 0 corresponds to the table after the
Load phase, while 𝑣 = 𝑗 (where 𝑗 > 0) corresponds to the table
after 𝑗 iteration of Data Maintenance. The results are consistent
with our expectations. We observe that the query latency increases
as additional data files are written into the tables. This latency
increase is similar to the increase observed in WP1 as new Data
Maintenance operations are executed. In other words, writing
new data after a specific version has been created appears to have
minimal impact on querying that specific version. In addition, we
analyze the storage efficiency (e.g. I/O and call counts) and find
no significant difference between queries run on the latest version
of the data and corresponding time travel queries on that version
after data modifications have been applied. This indicates that these
LSTs can efficiently support time travel queries without incurring
any significant overhead in query performance or storage.

6 DISCUSSION

LST-Bench aims to serve various personas with distinct interests
and requirements related to LSTs and their engine integrations, both
existing and future ones. Notably, even in scenarios where access
to infrastructure telemetry data is restricted, various personas can
still leverage LST-Bench by using custom patterns tailored to their
specific workloads and objectives.

(𝑖) Developers from Engine-Building Organizations. A primary
user persona targeted by LST-Bench is developers from organiza-
tions that build and commercialize platforms and query engines rely-
ing on LSTs. For instance,Microsoft has recently adopted LST-Bench
for evaluating their system deployments, benefiting from valuable
insights gained through these evaluations. They leverage LST-Bench
to compare various engine and LST version combinations, and have
plans to automate this process for tracking progress over time. Ad-
ditionally, some of these organizations have recently focused on
the development of a metadata translation layer from one LST to
another [13, 56]. In such cases, developers can use LST-Bench to
assess the effectiveness of the conversion process.
9Hudi excluded due to SQL extension bug for time travel queries: HUDI-7274.

https://issues.apache.org/jira/browse/HUDI-7274
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(𝑖𝑖) Developers from Engine-Using Organizations. Another key
user persona includes developers from organizations that manage
their own engines, even if they do not build them. Additionally,
prospective customers seeking to compare and choose across plat-
forms for a variety of workloads fall into this category. Some of
these users have expressed interest in constructing their own bench-
mark packages tailored to their specific scenarios, not necessarily
building upon TPC-DS as the base workload. They can then employ
LST-Bench to perform various tasks, such as engine selection and
configuration optimization.

(𝑖𝑖𝑖) Researchers and Data Professionals. LST-Bench extends its
utility to researchers and data professionals interested in studying
best practices and tuning configurations across the three-dimensional
space outlined in §2. For example, LST-Bench can help to automate
the selection of the optimal configuration for a table between CoW
and MoR modes, which result in different trade-offs between read
and write performance as demonstrated in §5. By expanding the
variety of datasets and packages in LST-Bench, these users can not
only fine-tune configuration values for LSTs, table maintenance op-
erations, or engines, but also investigate the existence of “no-regret”
defaults that apply to these configuration parameters. Comparisons
with the best defaults can be quantified to provide a clear under-
standing of the differences. While such evaluations are enabled by
the LST-Bench framework, they are beyond the scope of this paper.
Community Engagement and Adoption. The decision to open-
source LST-Bench invites participation from organizations relying
on LSTs for data processing. The engagement with these organiza-
tions has led to discussions about extensions to the tool in various
areas, with some already integrated into the code.

(𝑖) Workload Representation Model. The existing model lacks a
mechanism to define tasks dynamically based on the data stored in
LSTs, a feature valuable in various scenarios. For instance, one could
create tasks to optimize a partitioned table, with each task executed
on a user-configurable number of partitions. In another scenario,
one could split the data maintenance task into queries that affect
smaller data batches, each composed of a user-configurable number
of rows. However, these patterns do not fit easily into the workload
representation framework described in §3.1 because the number of
tasks to execute is not known in advance. To address this challenge,
we introduced the concept of parameterized custom tasks, which
expand the framework’s capabilities by enabling the integration of
custom user code for generating workflows dynamically.

(𝑖𝑖) Libraries of Workload Components.As explained in §4, tasks in
LST-Bench are organized into libraries for convenient reuse across
different workloads. Feedback from users indicated that this ap-
proach can lead to many redundant entries within workload pattern
definition files. Consequently, we are investigating expanding our
library model to incorporate definitions for other workload compo-
nents, such as a session or a phase, which could then be shared and
reused across multiple workloads as well.

(𝑖𝑖𝑖)Workload Packages.Users recommended expanding the scope
to include other standard benchmarks, like TPC-H, that are com-
monly used to evaluate analytical systems, as well as additional
scenarios in which LSTs are commonly used, such as data clean-
ing [10] and Change Data Capture (CDC) table mirroring with
transactional consistency guarantees [9].

(𝑖𝑣) Metrics. In the context of the CDC scenario, which allows
various workflow designs (potentially dependent on the LST ca-
pabilities), the choice of appropriate metrics for evaluating the
scenario is still unclear. For example, users may prioritize data
availability delay over end-to-end execution time.

7 RELATEDWORK

The research and methods of evaluation of open LSTs are rapidly
evolving, with new insights being published on amonthly basis. The
bulk of literature is in the form of blog posts by vendors or users and
is based on established benchmarks that were originally intended
for a different category of systems. In this section, we first focus on
works that compare LSTs both theoretically and empirically, then
we discuss benchmarking methodology that is relevant for LSTs,
and lastly, we discuss frameworks proposed in previous work.
Comparing LSTs. Blog posts and papers focusing on the compari-
son of LSTs can be split into two categories. The first category is a
theoretical evaluation of the different approaches, looking at fea-
tures such as transaction management, schema evolution, and time
travel [6, 7, 44]. Blog posts also commonly mention open-source
statistics such as number of committers, pull requests, and Github
ratings [51, 75]. After examining features and statistics, these blog
posts often endorse one LST over others. In contrast, our objective
is to establish a standardized approach to evaluate the performance
and stability of LSTs, and to offer a framework that allows for
empirical comparisons rather than just theoretical discussions.

The second category comprises comparisons of LSTs based on
experimental evaluations. For instance, in a recent paper, Jain et
al. [44] used TPC-DS benchmarking strategies adapted for LSTs
to identify the strengths and weaknesses of each of them: (𝑖) They
evaluate the impact of data updates on performance by running five
sample queries, then merging changes into a table multiple times,
and running the same queries again, and (𝑖𝑖) they create a synthetic
micro-benchmark with varying data refresh sizes to test the impact
of the update size on the performance of the LST. Similarly, other
recent blog posts [16, 46] have also used the Load task (which has
been modified to use Parquet as the source format [47]) and the
Single User task from TPC-DS to compare performance of LSTs.

Drawing conclusions about the superiority of a specific LST
from the aforementioned works is challenging. For instance, [44]
found that (𝑖) Delta outperforms both Iceberg and Hudi in TPC-
DS query performance, (𝑖𝑖) Delta and Iceberg have significantly
faster load times than Hudi, and (𝑖𝑖𝑖) Delta provides better query
performance after data has been modified than either Iceberg or
Hudi. Other works [16, 46] suggest that Hudi is competitive with
Delta in these same dimensions. However, this does not mean that
the results are misrepresented by any of those works, as engine
setup and configuration parameters can significantly impact these
evaluations [48, 78]. Additionally, most evaluations use different
versions of the LSTs and underlying execution engines further
complicating objective comparisons. To address these issues, we
proposed an evaluation methodology and framework that is open
source, customizable, repeatable, and easy to use, providing users
with a one-stop solution to evaluate these formats objectively.
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Benchmarking LSTs. Prior research has used various benchmarks
to compare LSTs, but the most commonly used benchmark is TPC-
DS. It is important to note that while TPC-DS V1 [57] was designed
to evaluate monolithic RDBMSs, TPC-DS V2 [64] was specifically
developed to cater to SQL-based big data systems. However, even
though TPC-DS V2 already considered SQL engines running on a
common storage layer (e.g., HDFS) that could be accessed by mul-
tiple systems, it ignored key elements in evaluating LSTs, such as
data layout optimization, time travel, or the impact of data manipu-
lations over extended time periods. Furthermore, the TPC-DS result
consists of a single performance metric, which, although straight-
forward for ranking purposes, is insufficient in capturing critical
LST-based concepts like stability (§3.2). We have therefore proposed
metrics that complement the TPC-DS performance score and can
help to evaluate a system across these additional dimensions.

As mentioned above, prior work [44] has taken a first step to-
wards modifying TPC-DS by evaluating the performance difference
of a set of queries before and after a series of SQLMERGE INTO state-
ments were executed. With our work, we take the idea of long-term
impact evaluation one step further and make TPC-DS composable,
i.e., we allow users to create their own workloads based on TPC-DS
by mixing and matching the different TPC-DS phases. This mod-
ification allows us to evaluate all of the previously unaddressed
elements that are unique to LSTs.

Prior work has also examined customized micro-benchmarks
designed to evaluate the read andwrite capabilities of different LSTs.
For instance, these benchmarks include operations that append and
remove data from an existing table, and mimic GDPR deletions [12].
Integrating these workloads into our benchmarking framework to
further extend the evaluation should be a straightforward process.
Benchmarking Frameworks. It is important to note that pre-
vious research has developed several benchmarking frameworks
mainly geared towards evaluating SQL systems. For example, OLTP-
Bench [24] can execute several standardized workloads using differ-
ent database backends such as PostgreSQL or SQL Server. Similarly,
DIAMetrics [19] was designed to allow its users to compare and
contrast the execution of different (customizable) benchmarks, also
extending the idea of benchmarking to include other aspects such
as data movement and data security. In this paper, we describe a
framework that is specifically focused on LSTs. In addition to their
specific SQL dialects, LSTs may be executed on different types of
clusters, with different optimization parameters, for which we de-
ploy different (and novel) benchmarks in their evaluation. DSB [25]
focuses on workload-driven RDBMSs that adapt over time using
ML techniques, extending TPC-DS with more complex data dis-
tribution, query templates, and dynamic workloads. In contrast,
LST-Bench concentrates on LSTs but could easily integrate DSB’s
modifications to expand the range of evaluated scenarios.

YCSB [15] presents a framework to compare cloud data serving
systems like Cassandra or HBase using tiers and workloads. YCSB
and LST-Bench share similarities in their approach, but YCSB fo-
cuses solely on this category of systems, and does not cover aspects
such as the composability of workloads, which is a key contribu-
tion of our work. Finally, PEEL [11] is designed for benchmarking
distributed systems, with a focus on reproducibility and automated
experiment processes. Our implementation also takes inspiration

from PEEL, although we recognize the need for further automa-
tion in LST-Bench to run evaluations more effectively in cloud
deployments, which we plan to explore in future work.

8 CONCLUSION

In this paper, we presented LST-Bench, our benchmarking frame-
work for evaluation of LSTs using workload patterns that mimic
real-world customer scenarios, such as those found within Mi-
crosoft, while at the same time providing means to fairly evaluate
those workloads. We discuss in-depth how we enable users to cre-
ate their own custom workloads using the extendable plug and
execute functionality within LST-Bench and showcase how we
use LST-Bench to evaluate and compare existing LSTs. Our exten-
sive evaluation finds that these LSTs vary significantly in terms
of their performance, storage efficiency, and stability. This demon-
strates that LST-Bench can be used to evaluate LSTs effectively
and comprehensively.
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